If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x-31=0
a = 2; b = -5; c = -31;
Δ = b2-4ac
Δ = -52-4·2·(-31)
Δ = 273
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{273}}{2*2}=\frac{5-\sqrt{273}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{273}}{2*2}=\frac{5+\sqrt{273}}{4} $
| 96=9g+6 | | y/5+3=-35 | | -41=-13=4/3a | | 9s-23=4 | | 33/66=n/11 | | 99-22(x+66)=33 | | 3x8=2x+ | | v+(-17)=24 | | 555-78(x+73)=1 | | 45+129+x=180 | | a+20=14 | | 2.8y+31=0.8y-7 | | 2.9-2(x+7)=2.9 | | (x-8)=-20 | | n-(-45)=16 | | 1/b2-4b/b2=b | | p^+3p=0 | | 5-5(x+5)=5 | | f-(-21)=-3 | | 240+0.25+x=180+0.40x | | 8-2(x+4)=7 | | j-(-8)=32 | | 5x+7+8x-71=180 | | 15x+10=18x-19 | | a2-10a+25=49 | | -5g+13g=54 | | a-10a+25=49 | | 19u=20u-1 | | j-7=-53 | | -8+7x=34 | | 2+(19-x)/2*9=74 | | x+4/7=-3 |